TDD Example for Login System

Testing and Integrate Manager: Zhihao Ma

| provide a basic structure for the LoginSystem class and its corresponding test class

LoginSystemTest.

1. The LoginSystem Class

This class will handle the login logic. For simplicity, I'll hardcode a valid username and
password.

public class LoginSystem {
private static final String VALID_USERNAME = "admin”;

private static final String VALID_PASSWORD = "password";

public String authenticate(String username, String password) {

if (VALID_USERNAME.equals(username)
&&VALID_PASSWORD.equals(password)) {

return "Login successful”;
} else {

return "Login failed”;



2. The LoginSystemTest Class

This class will contain tests for the LoginSysten. I'll use JUnit for testing.
import static org.junit.Assert.*;

import org.junit.Test;

public class LoginSystemTest {

@Test
public void testSuccessfulLogin() {
LoginSystem loginSystem = new LoginSystem();

String result = loginSystem.authenticate("admin”, "password123");

assertEquals(“Login successful”, result);

@Test
public void testFailedLogin() {
LoginSystem loginSystem = new LoginSystem();

String result = loginSystem.authenticate("user”, "wrongPassword");

assertEquals(“Login failed”, result);



. Considerations

Security: This example is not secure. In a real application, we should never
store passwords in plain text, and should use proper authentication
mechanisms.

Database Interaction: Typically, a login system interacts with a database to
verify user credentials. This would involve more complex logic and possibly
the use of frameworks like JDBC, Hibernate, or Spring Data.

User Interface: This example doesn't include a user interface. In a real
application, we would have a Ul that interacts with the LoginSysten.

Testing Practices: For more comprehensive testing, consider edge cases, null
inputs, and other scenarios. In a real-world scenario, mocking frameworks like

Mockito might be used to mock database interactions or other dependencies.



