
TDD Example for Login System
Testing and Integrate Manager: Zhihao Ma

I provide a basic structure for the LoginSystem class and its corresponding test class

LoginSystemTest.

1. The LoginSystem Class

This class will handle the login logic. For simplicity, I'll hardcode a valid username and

password.

public class LoginSystem {

 private static final String VALID_USERNAME = "admin";

 private static final String VALID_PASSWORD = "password";

 public String authenticate(String username, String password) {

 if (VALID_USERNAME.equals(username)

&&VALID_PASSWORD.equals(password)) {

 return "Login successful";

 } else {

 return "Login failed";

 }

 }

}

2. The LoginSystemTest Class

This class will contain tests for the LoginSystem. I'll use JUnit for testing.

import static org.junit.Assert.*;

import org.junit.Test;

public class LoginSystemTest {

 @Test

 public void testSuccessfulLogin() {

 LoginSystem loginSystem = new LoginSystem();

 String result = loginSystem.authenticate("admin", "password123");

 assertEquals("Login successful", result);

 }

 @Test

 public void testFailedLogin() {

 LoginSystem loginSystem = new LoginSystem();

 String result = loginSystem.authenticate("user", "wrongPassword");

 assertEquals("Login failed", result);

 }

}

3. Considerations

• Security: This example is not secure. In a real application, we should never

store passwords in plain text, and should use proper authentication

mechanisms.

• Database Interaction: Typically, a login system interacts with a database to

verify user credentials. This would involve more complex logic and possibly

the use of frameworks like JDBC, Hibernate, or Spring Data.

• User Interface: This example doesn't include a user interface. In a real

application, we would have a UI that interacts with the LoginSystem.

• Testing Practices: For more comprehensive testing, consider edge cases, null

inputs, and other scenarios. In a real-world scenario, mocking frameworks like

Mockito might be used to mock database interactions or other dependencies.

