
DocDuck Testing & Integration Plan

SWEng Group 1

May 28, 2024

Contents

1 Introduction 4
1.1 Test Objectives . 4
1.2 Scope of Testing . 4
1.3 System Overview . 5
1.4 Definitions . 5

2 Approach 5
2.1 Assumptions/Constraints, our deadlines both external and internal 5
2.2 Coverage, how we keep track of tests . 5
2.3 Test tools, what tools we are using to test . 6
2.4 Test type . 6

3 Plan 7
3.1 Test team . 7
3.2 Deliverables . 7

4 Modules to be tested 8
4.1 Text Library . 8
4.2 Graphics library . 8
4.3 Parser and validator . 9
4.4 Login Page . 9
4.5 Database Library . 9
4.6 Server Storage Library . 10
4.7 Image Library . 10
4.8 Machine Status overview Page . 10
4.9 Calendar Page . 11
4.10 Machine Information Page . 11
4.11 Stock Page . 12
4.12 Admin Page . 12

1

CONTENTS v0.1

5 Features Not in Spec 12
5.1 Rationale for Exemption . 12
5.2 Approach to Managing Potential Integration Issues . 13

6 Integration Testing plan 13
6.1 Objectives . 13
6.2 Scope . 13
6.3 Strategy . 14
6.4 Tools and Technologies . 14

2

CONTENTS v0.1

Testing & In-
tegration Ver-
sion

Release
Date

Changes Contributors

0.1 19/02/24 Initial Version. Set up Document and Tem-
plate

zm926 rw1834

1.0 22/03/24 Initial Release. Filled in sections 1-6. Filled in
Intro. Edited grammar

jrb617 lw2380
htsm500 js2140
zm926 wab513

3

v0.1

1 Introduction

1.1 Test Objectives

Testing of the DocDuck engineering guide will ensure that:

• Each Module is fully functioning as intended.

• Each module is fully compatible with each other.

• Each module successfully communicates with one another.

• That no matter how many extra features are added at its base it is still a fully functional
module.

• Feature creep is prevented by giving a set of required targets to aim for first, Before adding
extra features.

• There is a guide for the engineers in what to aim for, when creating the modules.

1.2 Scope of Testing

the testing scope of the project will cover:

• The Text Library

• The Graphics Library

• The Parser and Validator Library

• The Image Library

• The Database Library

• The Server Storage Library

• The Login Page

• The Machine Status Overview Page

• The Calendar Page

• The Stock Page

• The Admin Page

• Integration of the Text Library

• Integration of the Graphics Library

• Integration of the Parser and Validator Library

• Integration of the Image Library

• Integration of the Database Library

• Integration of the Server Storage Library

• Integration of the Login Page

• Integration of the Machine Status Overview Page

• Integration of the Machine Information Page

• Integration of the Calendar Page

• Integration of the Stock Page

• Integration of the Admin Page

4

1.3 System Overview v0.1

The XML library additions will not be covered as they cannot be tested, and any additional none
essential features will also not be covered in this plan.

1.3 System Overview

DocDuck is intended to provide businesses with an application that increases the efficiency of their
maintenance engineering team by providing an easy and efficient way for engineers to access, edit,
track and create documentation as well as provide easy and clear communication between admins
engineers and operators. The application, DocDuck, is an all in one application for the
documentation side of engineering, from tracking diagnostic and calibration dates to having clear
and easy access to maintenance history and number of parts in stock all in one convenient place. The
three main pillars for DocDuck are affordability, efficiency and usability. DocDuck will be networked
on all PC’s within a businesses system.

1.4 Definitions

2 Approach

2.1 Assumptions/Constraints, our deadlines both external and internal

Test Library Start Date End Date

Text Library 19/02/24 27/02/24

Graphics Library 20/02/24 27/02/24

Parser and Validator Library 20/02/24 27/02/24

Image Library 25/03/24 28/03/24

Database Library 26/03/24 28/03/24

Server Storage Library 03/04/24 08/04/24

Login Page 08/02/24 11/04/24

Machine Status Overview Page 12/04/24 16/04/24

Machine Information Page 16/04/24 19/04/24

Calendar Page 22/04/24 25/04/24

Stock Page 26/04/24 30/04/24

Admin Page 01/05/24 05/04/24

Table 1: Test Libraries Implementation Timeline

2.2 Coverage, how we keep track of tests

Maintaining high-quality software requires not only rigorous testing but also a comprehensive
understanding of test coverage. Test coverage is a critical metric that helps us ensure that our testing
efforts encompass as much of the source code as possible. To this end, we employ several tools and
methodologies that enable us to monitor and improve the coverage of our tests effectively.

Understanding Test Coverage Test coverage refers to the percentage of our source code that is
executed when our test suite runs. A higher percentage indicates a more extensive test suite that
covers more possible use cases and code paths, reducing the likelihood of undetected bugs. However,
it’s essential to balance striving for high coverage with the quality of tests to ensure they
meaningfully contribute to the application’s reliability

Improving Test Coverage Identifying areas with low test coverage is only the first step; the next
is to enhance our tests to address these gaps. This process involves writing additional tests for
untested code paths and refining existing tests to cover more scenarios. We prioritize testing based
on the criticality of code segments, focusing first on the core functionality and high-risk areas.

5

2.3 Test tools, what tools we are using to test v0.1

2.3 Test tools, what tools we are using to test

In the development of our application, ensuring the reliability and correctness of our code base is
paramount. To achieve this, we have employed JUnit 5, a powerful and flexible testing framework
designed for Java applications. JUnit 5 serves as the foundation for our testing strategy, enabling us
to write and execute tests across all the libraries and modules within our project.

JUnit 5 JUnit 5 represents the evolution of Java testing frameworks, bringing forth an
amalgamation of new features designed to enhance the testing experience. Key advancements
include:

• Versatility: A modular architecture that not only promotes greater adaptability but also
simplifies integration with a wide array of tools and frameworks, enhancing the versatility of
our testing environment.

• Variability: The introduction of dynamic tests and improved mechanisms for parameterised
testing, facilitate a broader and more nuanced assessment of our code under varying conditions.

• Manageability: Augmented assertion mechanisms and a suite of new annotations that
streamline the process of test development, making tests more expressive and easier to manage.

TestFX TestFX provides a robust framework for automating the testing of JavaFX applications. It
allows us to simulate user interactions with the GUI, such as clicking, typing, and navigating through
the application, in a controlled test environment. This enables us to verify that the GUI responds
correctly to user inputs and that visual elements behave as expected under various scenarios.

• Comprehensive Coverage: TestFX allows for detailed testing of all GUI components,
ensuring every aspect of the user interface can be automatically tested for functionality and
performance.

• Repeatability and Reliability: Automated tests with TestFX can be run repeatedly with
consistent conditions, providing reliable results and helping to identify intermittent UI issues
that may be difficult to replicate manually.

• Efficiency: Automating GUI testing with TestFX significantly reduces the time and effort
required for manual testing, allowing for more frequent and thorough testing cycles.

• Integration with JUnit 5: TestFX seamlessly integrates with JUnit 5, enabling us to
incorporate GUI tests into our existing test suites and workflows, further streamlining the
testing process.

2.4 Test type

A robust testing strategy encompasses various types of tests, each targeting different aspects of the
software to ensure comprehensive quality assurance. Our project employs a multi-tiered testing
approach, leveraging the strengths of each test type to cover the full spectrum of software quality
dimensions. Below, we detail the primary categories of tests utilized in our project and their
respective roles in our testing ecosystem.

Unit Tests Unit testing forms the backbone of our testing strategy, focusing on verifying the
smallest testable parts of the application in isolation (e.g., methods or classes). By using JUnit 5, we
efficiently create and execute tests that validate each unit’s correctness under various conditions.
This granularity allows us to pinpoint defects at an early stage, facilitating swift resolution.

GUI Testing with TestFX An essential component of our testing strategy is GUI testing, for
which we employ TestFX. This framework is specifically designed for testing JavaFX applications,
enabling us to automate and validate user interactions with the graphical user interface. TestFX

6

v0.1

allows us to simulate clicks, keystrokes, and navigation through the application, ensuring that the UI
behaves as expected in response to user actions. By incorporating TestFX, we can:

• Perform comprehensive testing of all graphical elements and user flows within the application.

• Ensure repeatability and consistency in tests, enhancing the reliability of our GUI testing
process.

• Efficiently identify and rectify UI issues, improving the application’s usability and user
satisfaction.

3 Plan

3.1 Test team

The Testing Team consists of the Testing and Integration Manager, their Deputy and other
members. Each member is assigned specific modules to create and perform the tests on. Their
generate testing and integration reports which are checked and ratified by the Testing and
Integration Manager.

Testing And Integration Manager: Zhihao Ma
Testing Team Members: James Stevenson and Noah Carter.

3.2 Deliverables

The testing of each module is documented in its own individual Testing and Integration Report.
This consists of the list of tests performed and the results thereof. In the event of failures, the same
test may be present multiple times. In the event of extra features being developed outside of this
plan, they, and their associated tests, will be documented therein. This serves to clearly outline the
tests performed on the module to ensure robustness and completeness of testing.

7

v0.1

4 Modules to be tested

4.1 Text Library

Test # Feature to Test Methods to Test Success Criteria

1 Draw default text
box

TextBox Construc-
tor

Default text box drawn with default pa-
rameters

2 Draw with defined
text content

setContent method Defined content drawn

3 Draw at defined po-
sition

setPostionX and
setPositionY meth-
ods

Text box drawn at correct position

4 Draw with defined
dimensions

setWidth and
setHeight methods

Text box drawn with defined dimensions

5 Draw text with de-
fined text colour

setFontColour
method

Text drawn with defined font colour

6 Draw text with de-
fined text size

setFontSize method Text drawn at defined size

7 Draw text with de-
fined font

setFont method Text drawn with defined font

8 Draw text with de-
fined line spacing

setLineSpacing
method

Text drawn with defined line spacing

9 Draw text with de-
fined character spac-
ing

setCharacterSpacing
method

Text drawn with defined character spac-
ing

10 Draw text box
with defined border
width

setBorderWidth
method

Text box drawn with defined border
width

11 Draw text box
with defined border
colour

setBorderColour
method

Text box border drawn with defined bor-
der colour

12 Draw for defined pe-
riod of time

setDelay method Text appears for designated time period

4.2 Graphics library

Test # Feature to Test Methods to Test Success Criteria

1 Draw Circles Circle Constructor Circle is created with correct position, di-
mensions, colour, shading, border, dura-
tion.

2 Draw Rectangles Rectangle Construc-
tor

Rectangle is created with correct position,
dimensions, colour, shading, border, du-
ration.

3 Draw Regular
Shape

Regular Shape Con-
structor

A regular shape is created with correct
position, dimensions, number of sides,
colour, shading, border, duration.

5 Draw Custom Shape Custom Shape Con-
structor

Custom Shape is created with correct po-
sition, points position, number of points,
number of sides, colour, shading, border,
duration.

6 Draw Line Segment Line Segment Con-
structor

Line Segment is created with correct
points position, thickness, colour, shad-
ing, border, duration.

8

4.3 Parser and validator v0.1

4.3 Parser and validator

Test # Feature to Test Methods to Test Success Criteria

1 Open XML Files Parser Class Sets up the SAX parser API to read and
parse XML files.

2 Validate XML Files Parser Class Setup SAX Validator to validate the XML
files against the schema.

3 Parse XML Files ParserHandler Class Uses event handlers to read through the
XML file and call events at each element
in the file.

4 Store XML Data ParserHandler Class Uses a data structure to store all informa-
tion in the XML file.

5 Parser & Validator
Error Handling

ParserErrorHandler
Class

Handles all SAX API errors and excep-
tions.

4.4 Login Page

Test # Feature to Test Methods to Test Success Criteria

1 Correct XML GUIBuilder XML Elements are displayed correctly on
the login page window, all properties of
the elements such as width, height, etc.
are correctly displayed

2 Username and Pass-
word Entry

TextField Use of the TextFields for username and
password passes the text on to other
methods correctly.

3 Login / Signup /
Forgot Password
Button

Button Even-
tHandler

Buttons pressed result in the correct ac-
tions taking place in the eventhandlers as-
signed for the buttons.

4 Username / Pass-
word Verification

Login Verification Users are only allowed to log in when en-
tered username / password is correct.

5 Incorrect Username
/ Password

4.5 Database Library

Test # Feature to Test Methods to Test Success Criteria

1 Stores User Data
(Username & Pass-
word)

Create database
& Store values in
database

Successfully stores all data in a suitable
format.

2 Encrypts Passwords Database API
methods

Successfully and securely encrypts all
passwords and data, so it is unreadable
without decryption.

3 Fetches data from
database

API Interaction to
retrieve data

Can retrieve the data for one user, as well
as provide the ability to validate login de-
tails when logging in.

9

4.6 Server Storage Library v0.1

4.6 Server Storage Library

Test # Feature to Test Methods to Test Success Criteria

1 Connects and in-
teracts with remote
server

SSH or FTP access
API methods

Can connect and transfer and receive data
from the server successfully with minimal
delay.

2 Stores Images and
Videos

API Methods to
push and pull data

Library can successfully transfer media
and other data onto the remote server for
storage as well as return the data to the
application when requested.

3 Cataloging and Or-
ganisation of files

Algorithms to
sort/parse data

Can successfully rearrange and organise
data in suitable formats for reading and
displaying to the application users.

4 Backs up data to the
server regularly

Schedular/Runnable
Methods

Schedular task which runs every set time
period to backup any data to the server
which can then be fetched by other users.

5 Fetches data from
the server regularly

Schedular/Runnable
Methods

Schedular task which runs every set time
period to fetch data from the server to
refresh information for all users.

4.7 Image Library

Test # Feature to Test Methods to Test Success Criteria

1 Display image setImage() The correct image is displayed on the la-
bel

2 Display image with
defined dimensions

setWidth and
setHeight

The label displaying the correct image is
sized as defined

3 Display image at de-
fined position

setPositionX and
setPositionY

The label displaying the correct image is
placed at the defined position

4 Set border around
the image label

setBorder() The border around the image is displayed
with defined width and colour

4.8 Machine Status overview Page

Test # Feature to Test Methods to Test Success Criteria

1 able to add new ma-
chine

create temporary
machine with de-
fault settings

machine successfully added to page

2 able to add compo-
nents to a machine

create a default ma-
chine and then add
new component to
machine

machine component successfully added on

3 able to add multiple
notes to a machine
and component

create a machine
with a single com-
ponent and apply
three notes to each

notes are successfully created

10

4.9 Calendar Page v0.1

4.9 Calendar Page

Test # Feature to Test Methods to Test Success Criteria

1 display accurate
dates

searching for a ran-
dom date in the cal-
endar

calendar is able to provide the correct
date

2 assign events in the
calendar

create an event for
a date and manually
change the calendar
to that date to see if
the even notification
pops up

calendar is able to successfully recognise
the date and the correct notification ap-
pears

3 calendar is able to
repeat events

assign an event a
specific day in the
week and manually
change the calen-
dars day to the same
day on each consec-
utive week 3 times

the same event notification pops up three
times

4.10 Machine Information Page

Test # Feature to Test Methods to Test Success Criteria

1 Display Image setImage() The correct image of the machine is dis-
played on the page.

2 Adjust Image Size setWidth and
setHeight

The displayed image is resized according
to the defined dimensions.

3 Display Title setTitle() The title of the machine is correctly dis-
played on the page.

4 Display Description setDescription() The description of the machine is cor-
rectly displayed on the page.

5 Functionality of
View Schematic
Button

onClick() Clicking on the View Schematic Button
opens the schematic of the machine.

6 View Stock Page Button/slider to
view stock page

Clicking on the button/slider to view
stock page navigates the user to the stock
page where they can view available parts
and their quantities.

7 Sort Machine Infor-
mation

Sorting machine in-
formation

Machine information can be sorted based
on different criteria (e.g., machine ID, sta-
tus, last maintenance date) and the sort-
ing functionality works as expected.

8 Search Machine In-
formation

Searching for spe-
cific machines

The search functionality allows users to
find machines based on various parame-
ters (e.g., machine ID, status) and dis-
plays accurate results.

11

4.11 Stock Page v0.1

4.11 Stock Page

Test # Feature to Test Methods to Test Success Criteria

1 Display Components displayComponents() All components within the ma-
chine are displayed on the stock
page, including photos and text
descriptions for each compo-
nent.

2 Display Local Stock displayLocalStock() The local stock of each com-
ponent is displayed accurately
on the stock page, showing the
stock number for each compo-
nent.

3 Filter Components filterComponents() Users can filter components by
types (e.g., electrical, mechani-
cal) on the stock page, ensuring
that only relevant components
are displayed.

4 Filter Stock filterStock() Users can filter components by
stock number (e.g., low stock,
out of stock) on the stock page,
enabling them to identify com-
ponents needing replenishment.

4.12 Admin Page

Test # Feature to Test Methods to Test Success Criteria

1 Create User Ac-
count

check that values
entered are stored

values are stored correctly

2 assign permissions create an account
and assign it multi-
ple roles

account successfully cycles through all
roles

3 delete accounts create a temporary
account for deletion

account is successfully deleted

4 modify accounts create an existing
account and mod-
ify both the account
username and pass-
word

successfully able to login with the newly
modified account

5 Features Not in Spec

In the development of our application, we leverage a widely-used XML library for parsing, and
manipulating XML files. This library forms a critical component of our system, facilitating the
seamless handling of XML data, which is integral to various functionalities within our application.
Despite its importance, the XML library is classified under ”Features Not in Spec” for direct testing
due to several justifications outlined below.

5.1 Rationale for Exemption

The decision to exempt the XML library from our internal testing specifications is based on a
comprehensive assessment of its reliability, performance, and the nature of its integration within our
project. Key factors include:

12

5.2 Approach to Managing Potential Integration Issues v0.1

1. Established Stability and Reliability: The XML library in use has been subjected to
extensive testing and has demonstrated high levels of stability and reliability across numerous
applications and platforms. Its maturity in the software development ecosystem underscores its
resilience and performance consistency.

2. External Validation: The library benefits from ongoing development and testing by a
dedicated community or organization. This external validation ensures that any bugs or
vulnerabilities are promptly identified and rectified, thereby maintaining the library’s integrity
and security.

3. Standard Compliance: As a tool that adheres to well-defined XML standards and protocols,
the library ensures compatibility and interoperability across different systems and applications.
This compliance further reduces the necessity for redundant testing within our project scope.

5.2 Approach to Managing Potential Integration Issues

Acknowledging the exemption of the XML library from our testing spec does not imply a disregard
for potential integration issues. To preemptively address any concerns and ensure smooth operation
within our application, we adopt the following strategies:

• Integration Testing: While the library itself is not directly tested, its integration and
interaction with our application are verified through comprehensive integration testing. This
ensures that the library functions as expected within our specific use cases.

• Monitoring and Feedback: Continuous monitoring of system logs and feedback mechanisms
are in place to quickly identify and address any anomalies or issues related to XML processing,
ensuring minimal impact on application performance.

• Version Control: Regular updates and adherence to recommended versions of the XML
library are practiced to leverage improvements and security patches, mitigating risks associated
with outdated components.

6 Integration Testing plan

Integration testing is a crucial phase in our software development life-cycle, aimed at evaluating the
combined functionality of interconnected modules within the main program. This section outlines
our strategic approach to conducting integration tests, ensuring that all components work
harmoniously together to achieve the desired outcomes.

6.1 Objectives

• To verify the data flow and interaction between modules are functioning as expected.

• To identify and resolve integration errors and interface mismatches.

• To ensure that integrated components meet the specified requirements.

6.2 Scope

The scope of our integration testing includes all critical modules and interfaces within the
application. Specifically, we will focus on:

• Database connectivity and data retrieval mechanisms.

• Interactions between the user interface and business logic layers.

• External service integrations.

• Any modules that have undergone significant changes or refactoring.

13

6.3 Strategy v0.1

6.3 Strategy

Our integration testing strategy encompasses several key elements, designed to methodically assess
the interaction between various components:

1. Top-Down Integration: We will start by testing the higher-level modules, progressively
integrating and testing lower-level modules. This approach facilitates early detection of issues
in the major control or decision-making modules.

2. Bottom-Up Integration: In parallel, we will test the lower-level modules first, gradually
integrating upwards. This is particularly useful for ensuring the reliability of utility and service
modules.

3. Continuous Integration (CI): Throughout the development process, integration testing will
be automated and run as part of our CI pipeline, enabling immediate feedback and early bug
detection.

6.4 Tools and Technologies

For conducting integration tests, we will utilize:

• JUnit 5 for orchestrating the test cases.

• TestFX for testing GUI components and interactions.

• Mock frameworks (e.g., Mockito) for simulating external dependencies.

14

	Introduction
	Test Objectives
	Scope of Testing
	System Overview
	Definitions

	Approach
	Assumptions/Constraints, our deadlines both external and internal
	Coverage, how we keep track of tests
	Test tools, what tools we are using to test
	Test type

	Plan
	Test team
	Deliverables

	Modules to be tested
	Text Library
	Graphics library
	Parser and validator
	Login Page
	Database Library
	Server Storage Library
	Image Library
	Machine Status overview Page
	Calendar Page
	Machine Information Page
	Stock Page
	Admin Page

	Features Not in Spec
	Rationale for Exemption
	Approach to Managing Potential Integration Issues

	Integration Testing plan
	Objectives
	Scope
	Strategy
	Tools and Technologies

